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Abstract – Polyphase-Coded FM (PCFM) radar waveforms 

generated using the power and spectrally efficient continuous 

phase modulation (CPM) framework can be further enhanced 

through the use of finer time control by subdividing each phase 

transition into sub-transitions and by allowing a greater phase 

excursion per transition interval, herein referred to as over-

phasing. These two strategies are denoted collectively as “over-

coding”. It is shown that various combinations of sub-transitions 

and over-phasing can greatly improve waveform design 

capabilities by expanding the available degrees-of-freedom.  It is 

also demonstrated that the commensurate increase in 

computational complexity for optimization under the over-

coding paradigm can largely be offset through GPGPU 

processing. 

I. INTRODUCTION 

Modern radar systems increasingly require radar emissions 
that provide both spectral and power efficiency. Power 
efficiency, enabled by constant modulus waveforms and the 
use of high power amplifiers operated in saturation, is 
necessary to achieve radar sensitivity requirements. The need 
for spectral efficiency is a consequence of electromagnetic 
compatibility guidelines such as the Radar Spectrum 
Engineering Criteria (RSEC). The continuous phase 
modulation (CPM) implementation [1,2] has been shown to be 
effective at producing polyphase-coded FM (PCFM) 
waveforms with high spectral efficiency and that are amenable 
for high power operation. The optimization of PCFM 
waveforms has been demonstrated [3-5] to facilitate the design 
of physical radar emissions that even account for the distortion 
imparted by a high-power transmitter. In this work the 
underlying CPM implementation is re-examined to discern 
where additional design freedoms may be exploited.  

Denoted as “over-coding”, this generalization of the radar 
CPM implementation in [1,2] consists of two attributes.  First, 
an increased temporal sampling of the code-to-waveform 
implementation structure is considered in which the phase 
transitions, which are themselves derived from the phase 
values of the chips in the code, are divided into sub-
transitions, albeit with a stricter phase-change constraint to 
avoid increasing the prescribed time-bandwidth product.  In 
contrast, the second attribute considers the allowance of phase 

transitions that exceed the bound of  ± (from [1,2]) thereby 
permitting a possible increase in time-bandwidth product, or at 
least the design freedoms afforded by occasional excursions 

beyond the ± bound. The prospective benefit of these new 
sources of design freedom, which arise due to the nature of the 
CPM radar code-to-waveform implementation, is a greater 
flexibility for waveform design that becomes particularly 
important for the realization of complex waveform-diverse 
operating schemes [6-8]. 

The possible detractor to this much-increased design 
freedom is the increased dimensionality dictated by the over-
coded CPM implementation which subsequently results in a 
significant increase in computation for optimization due to the 
greatly expanded search space. However, available 
technologies such as parallel processing and general purpose 
graphic processing unit (GPGPU) computation can greatly aid 
in offsetting this higher cost. 

II. OVER-CODED CPM IMPLEMENTATION 

Continuous Phase Modulation (CPM) has been shown to 
be effective as a means to implement radar codes as physical, 
transmitter-amenable PCFM waveforms that are intrinsically 
constant amplitude and possess tight spectral containment.  
For greater control over waveform degrees of freedom, this 
modulation framework is readily modified to support over-
coding, the structure of which is comprised of a sub-transition 
framework for phase changes and an increased freedom for 
the amount of phase change per transition interval through 
over-phasing.  

The CPM radar code-to-waveform implementation 
described in [1,2] converted a length N+1 polyphase code 
comprised of phase values θ0, θ1, …, θN into a sequence of N 
phase-change values via 
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where  

1    for   1, ,n n n n N      .        (2) 

By limiting the maximum phase change to  in (1), this 
implementation ensures that the phase transition always takes 
the shortest path around the unit phase circle for the benefit of 
spectral containment, which is clearly dependent upon the 

time derivative of phase.  Also, noting that while αn in (1) 
represents the amount and direction of the phase change, the 
path this phase change takes depends on the shaping filter g(t) 
that could be rectangular, raised cosine, etc. (see Fig. 1). 

The sub-transition representation thus provides a finer 
granularity for the trajectory of phase changes over a given 
time interval, essentially allowing for small deviations in the 
phase trajectory that can translate into improved reduction of 
range sidelobes. Likewise, relaxation of the maximum phase 

change of ±, at least to a modest degree and for relatively 
rare occurrences, can provide greater design degrees of 
freedom with only nominal increase to the spectral footprint. 

The CPM framework from [1,2] with modifications to 
support over-coding is shown in Fig. 1. Dividing each of the 
original N phase transition into L sub-transitions, a weighted 



impulse train p(t) is formed from the resulting NL total sub-

transitions that are now denoted as αLn. The impulses are 
separated by Ts such that the total pulse width of the waveform 
is T = NLTs = NTp, where Tp is the temporal extent of each 
original phase transition. The shaping filter g(t), which 
integrates to unity over its (now shortened) temporal support 
of [0, Ts], converts the weighted impulse train into a piecewise 
continuous function that is subsequently integrated to provide 
continuous phase.  

 

 

Figure 1.  Over-coded CPM Implementation 

 
The n

th
 impulse in p(t) is weighted by the phase-change  

αLn that is defined according to a discrete constellation of 
possible values on the unit phase circle.  For the original CPM 

radar implementation [1,2], αLn could be any one of C values 

taken from an equal-partitioned grid on [‒, +]. When using 

the over-phasing and sub-transition options, αLn can be any 
one of MC values on an equal-partitioned grid on [‒Mπ/L, 

+Mπ/L]. Without over-phasing, M  = 1 so the αLn constellation 
is comprised of C equidistant values on [‒π/L, +π/L]. 
Likewise, L = 1 indicates no division of the phase transitions. 

Here we consider different combinations of M = 1, 2 and  
L = 1, 2, 4, and 8.  The (M = 1, L = 1) case reduces to the 
original CPM radar waveform implementation of [1,2] for 
which we will use an optimized PCFM waveform from [5].  
For the other combinations further optimization is required.  It 
is discussed in the next section how the optimization process 
is performed and straightforward way to initialize a higher-
dimensional waveform optimization process using a lower-
dimensional optimization result. 

III. OVER-CODED WAVEFORM OPTIMIZATION 

The choice of optimization scheme for the radar waveform 
is arbitrary. The approach used must be able to search a large 
search space in a reasonable amount of time. The greedy 
search procedure used in [3-5] is employed here as well.  
Other approaches may provide better results, or may provide 
similar results using less computational resources. However, 
the purpose here is not to compare optimization methods but 
to demonstrate the feasibility and utility of the over-coded 
CPM structure for the design of physical waveforms. 

The basic approach to this optimization scheme is to 

determine the best αLn from the discrete constellation on 
[‒Mπ/L, +Mπ/L] independently for each of the n = 1, , NL 
sub-transitions, while keeping the other NL ‒ 1 sub-transitions 
unchanged. Thus the optimization involves NL parallel search 
processes before a decision is made to change a single value 

within the αLn sequence.   
For the n

th
 of NL parallel searches, a set of MC candidate 

waveforms is formed by setting αLn to each of the different 
values in the phase transition constellation and subsequently 

generating a new s(t) using the modified CPM implementation 

from Fig. 1.  The selection of the best value for αLn is made by 
evaluating a metric (e.g. PSL, ISL, etc.) for each resulting 
candidate s(t).  Thus each iteration in the optimization process 
involves determining both the particular sub-transition 
(indexed by n) and its associated best new phase transition 
value from the available constellation that provides the most 
improvement for the selected metric.  While it is clear that this 
greedy search strategy can and will encounter local optimality 
conditions, this limitation can be greatly alleviated by varying 
the particular assessment metric, a process denoted as 
performance diversity [5], since it is far less likely that the 
same local optimality locations in the search space will exist 
across each of the metrics.  Note that such a strategy is not the 
same as multi-objective optimization as all the metrics 
considered are just different measures of the range sidelobes. 

This greedy search procedure was found [5] to be quite 
tractable for waveform optimization on a search space of size 
C

N
 when N and C are each on the order of 100. For example, 

when N = C = 64, the space of 64
64

    3.9  10
115

 possible 
waveforms has been successfully searched with excellent 
results [4,5], though the global optimum cannot be guaranteed 
due to the sheer size of the search space. By comparison, to 
perform waveform optimization under the over-coding 
paradigm realizes a search space of (MC)

NL
 possible 

waveforms. With N = 64, C = 64, M = 2, and L = 8, the 

number of possible waveforms is now 128
512

  7.8  10
1078

. 
This enormous expansion of the search space necessitates a 
short cut to accelerate the optimization process.  

To accommodate a search of the sub-transition structure 
for, say L = 2, the search is initialized with the optimized 
waveform structure for an L = 1 search.  Specifically,  

2 1 1( 2)( 2 1) ( 1)( ) 2L n n L n                           (3) 

and  

2 1 1( 2)( 2 ) ( 1)( ) 2L n n L n                          (4) 

for n1 = 1, , N  associated with L = 1 and n2 = 1, , 2N 
associated with L = 2, such that the amount of phase transition 
is split equally over the sub-transitions. The new sub-
transition waveform can then be further optimized from a 
good initial starting point.  While this approach is clearly 
unlikely to find new waveforms for L = 2 that are radically 
different from those realized with L = 1, the search of this 
portion of the greatly expanded solution space is made more 
computationally feasible. It is likewise straightforward to 
expand the L = 2 framework to L = 4 and higher via the same 
manner as (3) and (4). 

Using two general-purpose graphics processing units 
(GPGPUs) in parallel and implementation parameters N = 64, 
C = 64, M = 1 or 2, and L = 1, 2, 4, or 8, these collective 
search tactics enabled between 40,000 and 100,000 candidate 
waveforms per second to be evaluated (the range is due to the 
differences in waveform dimensionality).  The total run time 
for the results shown in the next section took less than 6 hours 
for the highest dimension result.  Even greater dimensionality 
and/or speed could be achieved with the parallel combination 
of multiple GPGPUs or cluster nodes. 
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Finally, for over-phasing freedom it is necessary to prevent 
the waveform spectral content from expanding beyond some 
allowable boundary as was previously ensured by the phase 

transition bound of ±. As such, a frequency-domain template 
is employed to define a mean-square error metric between a 
prescribed waveform spectrum and the spectral content of the 
waveform-under-test. This frequency metric, denoted as 
frequency template error (FTE) [5] is used to further constrain 
the optimization process and thus ultimately enables a 
reduction in PSL while limiting out-of-band spectral growth 
(due to the relationship between autocorrelation and power 
spectral density). The FTE metric is defined as 
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where U ( f ) is the spectral template and Z ( f )  is the spectral 
content of the waveform-under-test. The limits of integration, 
fL and fH, are the minimum and maximum frequencies of 
interest including out-of-band spectral roll-off. As used here, 
the spectral template is set by using the spectral content of a 
baseline waveform for the purpose of preventing the spectral 
content from deviating too much from a prescribed shape. The 
spectral template can however take any arbitrary shape such as 
those previously used to design NLFM waveforms via the 
principle of stationary phase [9].  

 The optimization metric used here is an aggregation of 
those mentioned (PSL, ISL, and FTE) via a weighted 
geometric mean. The autocorrelation metrics (PSL and ISL) 
are given a collective weight of (1-µ), and the frequency 
metric (FTE) is given a weight of µ. The two autocorrelation 
metrics are also geometrically weighted with respect to one 
another with a weight of ε for PSL and a weight of (1- ε) for 
ISL. The resulting aggregate metric is thus 

Aggregate metric:       
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where the specific values of 0  µ  1 and 0  ε  1 are varied 
as the optimization progresses to help avoid local optimality. 

IV. RESULTS 

To demonstrate the optimization of an over-coded PCFM 
waveform, the PSL-optimized waveform from [5], which 
corresponds to an (L = 1, M = 1) CPM implementation, is used 
for the initialization with the expansion approach described in 
Sect. III. This initial waveform has N = 64 phase transitions 

and C = 64 equidistant constellation points on [‒, +]. The 
optimization was performed using L = 2, 4, and 8 sub-
transitions and with over-phasing of M = 1 (none) and M = 2.  
The time-bandwidth product for all waveforms (measured 

using 3 dB bandwidth) is well approximated as BT  N = 64. 
For the M = 2 over-phasing cases a frequency metric 

weight of µ = 0.005 was incorporated into the search metric 
for the cases of L = 2, 4, and 8 sub-transitions with the 
frequency template set using the spectral content of the initial 
(L = 1, M = 1) waveform. The optimization was comprised of 
550 runs, with each run being performed until the given metric 
could not further improve, and between runs alternating 
between the metrics of ISL (ε = 0), PSL (ε = 1), and a mix of 

the two (0 < ε < 1). Each run used the prior run result as 
initialization. The final result with the lowest PSL is shown.   

The PSL result for each optimization is shown in Fig. 2. 
As a general trend the PSL decreases with increasing number 
of sub-transitions L. The use of over-phasing produced a much 
lower PSL, particularly in conjunction with L = 8 sub-
transitions. There is clearly diminishing improvement as L 
increases, though it is more pronounced when over-phasing is 
not used. It should be noted that, while these results 
demonstrate very low PSL levels for waveforms based on BT 

  64, it is not known if the globally optimal solution has been 
attained so further improvement may be still be possible.   
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Figure 2.  Comparison of PSL for over-coded PCFM waveforms of BT  64 

with over-phasing and sub-transitions 

 
A selection of the results of the optimization is shown in 

Table 1. The initial waveform (L = 1, M = 1) is compared 
against the waveform using only over-phasing (L = 1, M = 2), 
the 8 sub-transition waveform without over-phasing (L = 8,   
M = 1), and the 8 sub-transition waveform with over-phasing    
(L = 8, M = 2).  

 
Table 1.  PSL, ISL, and mainlobe half-power width (HPW) for 

optimized waveforms with BT  64 

 L = 1, 

M = 1 

L = 1, 

M = 2 

L = 8, 

M = 1 

L = 8, 

M = 2 

PSL (dB) ‒41.4 ‒41.9 ‒44.1 ‒52.0 

ISL (dB) ‒26.1 ‒27.1 ‒28.0 ‒36.9 

HPW     

( T/N) 1.12 1.12 1.11 1.10 

 
All waveforms in Table 1 have PSL values lower than ‒41 

dB and ISL values lower than ‒26 dB. Thus, as expected, no 
degradation to PSL or ISL was introduced by over-coding. 
The ISL values were all close to ‒27 dB, except for the over-
phased, sub-transition waveform (L = 8, M = 2), which 
produced an ISL of ‒36.9 dB. Such a result is to be expected 
accompanying the more than 10 dB reduction in PSL observed 
for this case. All four waveforms maintain a half-power width 

(HPW) for the autocorrelation mainlobe of around 1.12  T/N 



where T is the pulsewidth and N is the number of phase 

transitions over the pulsewidth. Compared to 0.88  T/N, 
which is found for a CPM-implemented LFM chirp with        
N = 64, the mainlobe for these particular examples of 
nonlinear FM waveforms exhibit only a small degree of 
degradation in range resolution.  More importantly, no further 
range resolution degradation is observed for over-coding 
despite the significant further reduction in sidelobe levels. 

 Full and close-up autocorrelation plots of the initial         
(L = 1, M = 1) and L = 8 sub-transition waveforms (both        
M = 1 and M = 2) are shown in Figs. 3 and 4, respectively. 
The decrease in ISL and PSL by the sub-transition waveforms 
is readily apparent. While the HPW of the sub-transition 
waveforms is marginally smaller than for the initial waveform, 
the mainlobe for these new waveforms is marginally wider at 
the ‒50 dB level.  
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Figure 3.  Autocorrelation comparison for over-coded optimized waveforms 

relative to the non-over-coded optimized waveform (BT  64) 
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Figure 4.  Close-up autocorrelation comparison for over-coded optimized 

waveforms relative to the non-over-coded optimized waveform (BT  64) 

 

The respective phase transition values (normalized by ) 
for the initial (L = 1, M = 1) and sub-transition waveforms    

(L = 8, M = 1 and L = 8, M = 2) are shown in Fig. 5. While 
the sub-transition waveform sans over-phasing (L = 8, M = 1) 
shows only a minor amount of change relative to the initial 
waveform due to small sub-transition perturbations, the over-
phased waveform (L = 8, M = 2) shows significant deviations. 
These changes manifest primarily in a rapid oscillation of the 

α values between positive and negative phase transitions at the 
beginning and end of the waveform.  
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Figure 5.  Phase transition (α) values comparison for over-coded and     

non-over-coded waveforms 

 

In Fig. 7 a close-up of selected α values (top panel) for the 
initial waveform and an over-coded waveform (L = 1, M = 1 
and L = 8, M = 1) are compared to the resulting continuous 
phase trajectories (bottom panel) of each waveform. It is 

observed that any deviation from the α values associated with 
the initial waveform (L = 1, M = 1) by the L = 8 sub-transition 
waveform produces a corresponding deviation in phase for the 
continuous PCFM waveform. 
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Figure 6.  Phase transition (α) values compared with unwrapped continuous 

phase for the the L = 1, M = 1; and L = 8, M = 2 waveforms 

 
 The spectral content of the initial waveform (L = 1,         

M = 1) and of two versions of over-phased, sub-transition 



waveforms (L = 4, M = 2 and L = 8, M = 2) is shown in Fig. 
6. Above ‒15 dB the three waveforms are practically identical, 
while below this point the two over-coded waveforms 
demonstrate modest spectral spreading. This widening is more 
evident for the L = 8 sub-transition waveform than the L = 4 
sub-transition waveform. Since both of these over-coded 
waveforms employ over-phasing with M = 2 the frequency 
metric is needed to prevent the width of the spectral mainlobe 
from widening significantly (could have potentially doubled 
without the frequency metric constraint). 
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Figure 7.  Comparison of waveform spectrum for the L = 1, M = 1;              

L = 4, M = 2; and L = 8, M = 2 waveforms 

 
To verify the performance of an over-coded waveform can 

be realized as a physical emission, a Tektronix AWG70K 
waveform generator and a Tektronix DPO70K oscilloscope 
were used.  The waveform was implemented on the AWG and 
then sampled by the oscilloscope (at the rate of 6.25 GS/s). 
This waveform generator has 10 bits/sample while the 
oscilloscope has 8 bits/sample. To compensate for noise and 
signal loss, the waveform generation/sampling was repeated 
100 times and coherently integrated. The physical signal was 
produced at a center frequency of 1.8425 GHz with a total 
pulse width of T = 6.39 µs. The autocorrelations of the 
original and captured signals are shown in Figs. 8 and 9. 

Using the (L = 8, M = 2) waveform, it was observed that 
the sampled signal captured by the oscilloscope realized a PSL 
increase of 2.0 dB, which is rather minimal considering that 
sidelobes levels still remain below ‒50 dB for this physical 
instantiation. Otherwise, the autocorrelation of the captured 
emission is remarkably close to that of the original waveform, 
thus verifying that the over-coded waveform can be physically 
produced.  It remains to be seen how this high-dimensional 
waveform will behave in the presence of the non-
ideal/nonlinear distortion that exists in an actual radar system.  
However, using the “transmitter-in-the-loop” approach from 
[4,5] in conjunction with over-coding may well enable the 
increased degrees-of-freedom of the latter to compensate 
naturally for these deleterious effects of the radar.  
Furthermore, these degrees-of-freedom may play a significant 
role in continued efforts to realize transmitter/waveform co-
design (e.g. [10]). 
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Figure 8.  Autocorrelation comparison of the original (L = 8, M = 2) 

waveform with its captured version  
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Figure 9.  Close-up autocorrelation comparison of the original                    

(L = 8, M = 2) waveform with its captured version 

 
Finally, the range-Doppler ambiguity function for the      

(L = 8, M = 2) waveform is shown in Fig. 10.  Clearly this 
over-coded PCFM waveform is similar to other nonlinear FM 
(NLFM) waveforms in terms of the delay-Doppler coupled 
mainlobe and surrounding Fresnel lobs.  Given the expanded 
degrees-of-freedom, it may also be possible to trade the 
improved range sidelobe response at zero Doppler for sidelobe 
suppression across a non-zero Doppler swath to enhance 
Doppler tolerance. 
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Figure 10.  Range-Doppler ambiguity of the L = 8, M = 2 waveform     

(truncated below ‒30 dB) 

 

V. CONCLUSION 

A new method of sub-dividing the phase transitions of 
PCFM waveforms generated within the CPM framework has 
been demonstrated. An increase in maximum frequency 
excursion has also been incorporated. These two strategies are 
collectively referred to as over-coding and allow for greater 
degrees-of-freedom for the design of physical radar 
waveforms.  

For a time-bandwidth product of approximately 64 and an 
optimized PCFM waveform based on the original CPM 
framework possessing ‒41.4 dB PSL, the additional degrees-
of-freedom allowed by over-coding has enabled the realization 
of a ‒52 dB PSL waveform with the same time-bandwidth 
product.  Further, such over-coded waveforms have been 
shown to be amenable to physical generation with an arbitrary 

waveform generator, possess the Doppler characteristics 
typical to NLFM waveforms, and maintain good spectral 
containment. Ongoing work includes extending the 
optimization of the autocorrelation response to the range-
Doppler response, inclusion of hardware distortion effects, 
and evaluation of alternative optimization methods. 
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